Insights into cardioprotection obtained from study of cellular Ca2+ handling in myocardium of true hibernating mammals.
نویسندگان
چکیده
Mammalian hibernators exhibit remarkable resistance to low body temperature, whereas non-hibernating (NHB) mammals develop ventricular dysfunction and arrhythmias. To investigate this adaptive change, we compared contractile and electrophysiological properties of left ventricular myocytes isolated from hibernating (HB) woodchucks (Marmota monax) and control NHB woodchucks. The major findings of this study were the following: 1) the action potential duration in HB myocytes was significantly shorter than in NHB myocytes, but the amplitude of peak contraction was unchanged; 2) HB myocytes had a 33% decreased L-type Ca2+ current (I(Ca)) density and twofold faster I(Ca) inactivation but no change in the current-voltage relationship; 3) there were no changes in the density of inward rectifier K+ current, transient outward K+ current, or Na+/Ca2+ exchange current, but HB myocytes had increased sarcoplasmic reticulum Ca2+ content as estimated from caffeine-induced Na+/Ca2+ exchange current values; 4) expression of the L-type Ca2+ channel alpha(1C)-subunit was decreased by 30% in HB hearts; and 5) mRNA and protein levels of sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a), phospholamban, and the Na+/Ca2+ exchanger showed a pattern that is consistent with functional measurements: SERCA2a was increased and phospholamban was decreased in HB relative to NHB hearts with no change in the Na+/Ca2+ exchanger. Thus reduced Ca2+ channel density and faster I(Ca) inactivation coupled to enhanced sarcoplasmic reticulum Ca2+ release may underlie shorter action potentials with sustained contractility in HB hearts. These changes may account for natural resistance to Ca2+ overload-related ventricular dysfunction and point to an important cardioprotective mechanism during true hibernation.
منابع مشابه
Insights into cardioprotection obtained from study of cellular Ca handling in myocardium of true hibernating mammals
Atsuko Yatani, Song-Jung Kim, Raymond K. Kudej, Qian Wang, Christophe Depre, Keiichi Irie, Evangelia G. Kranias, Stephen F. Vatner, and Dorothy E. Vatner Cardiovascular Research Institute and Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103; and Department of Pharmacology and Cell Biophysio...
متن کاملCellular mechanisms of contractile dysfunction in hibernating myocardium.
Ischemic heart disease is a leading cause of chronic heart failure. Hibernation (ie, a chronic reduction of myocardial contractility distal to a severe coronary stenosis and reversible on revascularization) is an important contributing factor. The underlying cellular mechanisms remain however poorly understood. In young pigs (n=13, ISCH), an acquired coronary stenosis >90% (4 to 6 weeks) result...
متن کاملProteomic mechanisms of cardioprotection during mammalian hibernation in woodchucks, Marmota monax.
Mammalian hibernation is a unique strategy for winter survival in response to limited food supply and harsh climate, which includes resistance to cardiac arrhythmias. We previously found that hibernating woodchucks (Marmota monax) exhibit natural resistance to Ca2+ overload-related cardiac dysfunction and nitric oxide (NO)-dependent vasodilation, which maintains myocardial blood flow during hib...
متن کاملReduced force generating capacity in myocytes from chronically ischemic, hibernating myocardium.
The contractile dysfunction of the hibernating myocardium in situ results from local environmental factors, but also from intrinsic cellular remodelling that may determine reversibility. Previous studies have suggested defects in myofilament Ca2+ responsiveness. We prepared single myocytes from control (CTRL, n(pigs)=7) and from hibernating myocardium (HIB, n(pigs)=8), removed the membranes and...
متن کاملThe first minutes of reperfusion: a window of opportunity for cardioprotection.
During the past decade, the understanding has grown that control of the conditions of reperfusion is critical for salvaging ischemic-reperfused myocardium. The first few minutes of reperfusion constitute a critical phase, as here lethal tissue injury in addition to that already developed during ischemia may be initiated. The identification of the mechanisms of reperfusion-induced cell death ope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 6 شماره
صفحات -
تاریخ انتشار 2004